11 research outputs found

    Real-Time Machine Learning Models To Detect Cyber And Physical Anomalies In Power Systems

    Get PDF
    A Smart Grid is a cyber-physical system (CPS) that tightly integrates computation and networking with physical processes to provide reliable two-way communication between electricity companies and customers. However, the grid availability and integrity are constantly threatened by both physical faults and cyber-attacks which may have a detrimental socio-economic impact. The frequency of the faults and attacks is increasing every year due to the extreme weather events and strong reliance on the open internet architecture that is vulnerable to cyber-attacks. In May 2021, for instance, Colonial Pipeline, one of the largest pipeline operators in the U.S., transports refined gasoline and jet fuel from Texas up the East Coast to New York was forced to shut down after being attacked by ransomware, causing prices to rise at gasoline pumps across the country. Enhancing situational awareness within the grid can alleviate these risks and avoid their adverse consequences. As part of this process, the phasor measurement units (PMU) are among the suitable assets since they collect time-synchronized measurements of grid status (30-120 samples/s), enabling the operators to react rapidly to potential anomalies. However, it is still challenging to process and analyze the open-ended source of PMU data as there are more than 2500 PMU distributed across the U.S. and Canada, where each of which generates more than 1.5 TB/month of streamed data. Further, the offline machine learning algorithms cannot be used in this scenario, as they require loading and scanning the entire dataset before processing. The ultimate objective of this dissertation is to develop early detection of cyber and physical anomalies in a real-time streaming environment setting by mining multi-variate large-scale synchrophasor data. To accomplish this objective, we start by investigating the cyber and physical anomalies, analyzing their impact, and critically reviewing the current detection approaches. Then, multiple machine learning models were designed to identify physical and cyber anomalies; the first one is an artificial neural network-based approach for detecting the False Data Injection (FDI) attack. This attack was specifically selected as it poses a serious risk to the integrity and availability of the grid; Secondly, we extend this approach by developing a Random Forest Regressor-based model which not only detects anomalies, but also identifies their location and duration; Lastly, we develop a real-time hoeffding tree-based model for detecting anomalies in steaming networks, and explicitly handling concept drifts. These models have been tested and the experimental results confirmed their superiority over the state-of-the-art models in terms of detection accuracy, false-positive rate, and processing time, making them potential candidates for strengthening the grid\u27s security

    A Performance Comparison of Data Mining Algorithms Based Intrusion Detection System for Smart Grid

    Full text link
    Smart grid is an emerging and promising technology. It uses the power of information technologies to deliver intelligently the electrical power to customers, and it allows the integration of the green technology to meet the environmental requirements. Unfortunately, information technologies have its inherent vulnerabilities and weaknesses that expose the smart grid to a wide variety of security risks. The Intrusion detection system (IDS) plays an important role in securing smart grid networks and detecting malicious activity, yet it suffers from several limitations. Many research papers have been published to address these issues using several algorithms and techniques. Therefore, a detailed comparison between these algorithms is needed. This paper presents an overview of four data mining algorithms used by IDS in Smart Grid. An evaluation of performance of these algorithms is conducted based on several metrics including the probability of detection, probability of false alarm, probability of miss detection, efficiency, and processing time. Results show that Random Forest outperforms the other three algorithms in detecting attacks with higher probability of detection, lower probability of false alarm, lower probability of miss detection, and higher accuracy.Comment: 6 pages, 6 Figure

    Primary User Emulation Attacks: A Detection Technique Based on Kalman Filter

    Full text link
    Cognitive radio technology addresses the problem of spectrum scarcity by allowing secondary users to use the vacant spectrum bands without causing interference to the primary users. However, several attacks could disturb the normal functioning of the cognitive radio network. Primary user emulation attacks are one of the most severe attacks in which a malicious user emulates the primary user signal characteristics to either prevent other legitimate secondary users from accessing the idle channels or causing harmful interference to the primary users. There are several proposed approaches to detect the primary user emulation attackers. However, most of these techniques assume that the primary user location is fixed, which does not make them valid when the primary user is mobile. In this paper, we propose a new approach based on the Kalman filter framework for detecting the primary user emulation attacks with a non-stationary primary user. Several experiments have been conducted and the advantages of the proposed approach are demonstrated through the simulation results.Comment: 14 pages, 9 figure

    Deep Learning-Based Intrusion Detection System for Advanced Metering Infrastructure

    Full text link
    Smart grid is an alternative solution of the conventional power grid which harnesses the power of the information technology to save the energy and meet today's environment requirements. Due to the inherent vulnerabilities in the information technology, the smart grid is exposed to a wide variety of threats that could be translated into cyber-attacks. In this paper, we develop a deep learning-based intrusion detection system to defend against cyber-attacks in the advanced metering infrastructure network. The proposed machine learning approach is trained and tested extensively on an empirical industrial dataset which is composed of several attack categories including the scanning, buffer overflow, and denial of service attacks. Then, an experimental comparison in terms of detection accuracy is conducted to evaluate the performance of the proposed approach with Naive Bayes, Support Vector Machine, and Random Forest. The obtained results suggest that the proposed approaches produce optimal results comparing to the other algorithms. Finally, we propose a network architecture to deploy the proposed anomaly-based intrusion detection system across the Advanced Metering Infrastructure network. In addition, we propose a network security architecture composed of two types of Intrusion detection system types, Host and Network-based, deployed across the Advanced Metering Infrastructure network to inspect the traffic and detect the malicious one at all the levels.Comment: 7 pages, 6 figures. 2019 NISS19: Proceedings of the 2nd International Conference on Networking, Information Systems & Securit

    Primary User Emulation Attacks: A Detection Technique Based on Kalman Filter

    No full text
    Cognitive radio technology addresses the problem of spectrum scarcity by allowing secondary users to use the vacant spectrum bands without causing interference to the primary users. However, several attacks could disturb the normal functioning of the cognitive radio network. Primary user emulation attacks are one of the most severe attacks in which a malicious user emulates the primary user signal characteristics to either prevent other legitimate secondary users from accessing the idle channels or causing harmful interference to the primary users. There are several proposed approaches to detect the primary user emulation attackers. However, most of these techniques assume that the primary user location is fixed, which does not make them valid when the primary user is mobile. In this paper, we propose a new approach based on the Kalman filter framework for detecting the primary user emulation attacks with a non-stationary primary user. Several experiments have been conducted and the advantages of the proposed approach are demonstrated through the simulation results

    Multi-Attributes, Utility-Based, Channel Quality Ranking Mechanism for Cognitive Radio Networks

    No full text
    Cognitive radio is an intelligent wireless solution that aims to enhance the access to the radio spectrum. In this technology, secondary users sense the radio spectrum, select the best channel among a pool of free channels, and determine the optimal transmission parameters to meet their quality-of-service requirements while maximizing the spectral efficiency. Over the past decade, several channel-ranking mechanisms have been proposed. However, these mechanisms consider only the remaining idle time of the channel and exclude some crucial parameters. This convincingly demonstrates a strong need for a new channel quality-ranking model that jointly considers several parameters to select the best communication channel for transmission. This paper proposes a utility model that integrates several important parameters for ranking channels. First, we underline the importance of the process of the channel quality ranking. Then, we describe a multi-attributes, utility-based, channel quality-ranking model. Finally, we describe a series of experiments and their results, which show that our model effectively ranks the best communication channels first

    An Ensemble-Based Machine Learning Approach for Cyber-Attacks Detection in Wireless Sensor Networks

    No full text
    Wireless Sensor Networks (WSNs) are the key underlying technology of the Internet of Things (IoT); however, these networks are energy constrained. Security has become a major challenge with the significant increase in deployed sensors, necessitating effective detection and mitigation approaches. Machine learning (ML) is one of the most effective methods for building cyber-attack detection systems. This paper presents a lightweight ensemble-based ML approach, Weighted Score Selector (WSS), for detecting cyber-attacks in WSNs. The proposed approach is implemented using a blend of supervised ML classifiers, in which the most effective classifier is promoted dynamically for the detection process to gain higher detection performance quickly. We compared the performance of the proposed approach to three classical ensemble techniques: Boosting-based, Bagging-based, and Stacking-based. The performance comparison was conducted in terms of accuracy, probability of false alarm, probability of detection, probability of misdetection, model size, processing time, and average prediction time per sample. We applied two independent feature selection techniques. We utilized the simulation-based labeled dataset, WSN-DS, that comprises samples of four internal network-layer Denial of Service attack types: Grayhole, Blackhole, Flooding, and TDMA scheduling, in addition to normal traffic. The simulation revealed promising results for our proposed approach

    Random Forest Regressor-Based Approach for Detecting Fault Location and Duration in Power Systems

    No full text
    Power system failures or outages due to short-circuits or “faults” can result in long service interruptions leading to significant socio-economic consequences. It is critical for electrical utilities to quickly ascertain fault characteristics, including location, type, and duration, to reduce the service time of an outage. Existing fault detection mechanisms (relays and digital fault recorders) are slow to communicate the fault characteristics upstream to the substations and control centers for action to be taken quickly. Fortunately, due to availability of high-resolution phasor measurement units (PMUs), more event-driven solutions can be captured in real time. In this paper, we propose a data-driven approach for determining fault characteristics using samples of fault trajectories. A random forest regressor (RFR)-based model is used to detect real-time fault location and its duration simultaneously. This model is based on combining multiple uncorrelated trees with state-of-the-art boosting and aggregating techniques in order to obtain robust generalizations and greater accuracy without overfitting or underfitting. Four cases were studied to evaluate the performance of RFR: 1. Detecting fault location (case 1), 2. Predicting fault duration (case 2), 3. Handling missing data (case 3), and 4. Identifying fault location and length in a real-time streaming environment (case 4). A comparative analysis was conducted between the RFR algorithm and state-of-the-art models, including deep neural network, Hoeffding tree, neural network, support vector machine, decision tree, naive Bayesian, and K-nearest neighborhood. Experiments revealed that RFR consistently outperformed the other models in detection accuracy, prediction error, and processing time
    corecore